王叁寿就是大数据时代的先行者,在大数据以全新的概念出现在人们视野的时候,他已经迅速捕捉到时代的机遇,快人一步行动起来,创立了九次方大数据,打造属于王叁寿自己的数据星河梦。
大数据时代哪7类人最赚钱
一个划时代新的技术和思维的兴起,它会驱动几乎所有的产业变革,大数据更是如此,通过几年的观察和最近大量的基金公司朋友的接触,我从赚钱的角度对这个领域进行了分析。
第一类:对已经上市企业股票投资的基金公司
他们通过炒作概念在股票市场活动巨额回报。这些人分析发展趋势,把握大局,他们关心产业政策,关心市场空间,少关心具体运营能力和市场竞争格局。据了解,大数据概念股以 2010 年 6 月 1 日为原始起点,截至 2015 年 11 月 10 日,大数据概念指数变化区间在 [95%,1860%],一直以来强于上证指数,相对上证指数有很高的收益,这个相对收益是惊人的,最高时超额收益超过 15 倍。即使从 2012 年底开始的创业板指数,也跑弱于大数据概念指数,足见大数据概念相关个股具有较好的回报。相对高点时,大数据概念指数强于创业板指数 10 倍以上;从低点起来,大数据指数涨幅到最高点超过 18 倍,如此高的涨幅让许多人羡慕不已,相关个股精彩纷呈。投资这类的企业如拓而思,用友,东方国信、启明星辰、绿盟科技、恒生电子。
他们用最短的时间,研究股票,投资,获益,资本效率极高,一些高端的股票和投资者,他们会专门针对行业要求做培训,走访***走访客户。短时间内就可以赚的钵满盘满。
第二类:对大数据创业方向投资的 VC 和 PE 们
他们从最开始就投资有最高价值的大数据的企业,并从中发现商机,过去的几年只是一个开始,可以预见大数据行业未来十年仍然会是创业公司的机遇地。他们眼光超前,投资的估值不断高升;他们跟进投资,然后迅速推动企业发展,然后期待包装上市。这类企业如:集奥聚合、国双科技、华院数云、品友互动、易赞普、百分点科技、永洪科技、国云数据、数据堂、数海科技等。投资资本如:宽带资本、红杉资本、IDG、创新工场、深圳创投、清科、软银中国,今日资本等。
第三类:创始人和联合创始人,企业越来越值钱
虽然有些企业死了,但是大部分还在受到资本追捧,创业者最苦,但是在资本催生产业变革的年代他们获益也是最多的,现在大数据企业的估值从几年前的几个亿到几十亿是翻了近十倍;企业老板的身价也是翻了近十倍,这类人笔者认识很多,因为比较涉密不一一列举。
第四类:讲课的人
行业内专家教授参加各种会议各种讲课,,在线教育,还有专家学者备受亲来。笔者成立的大数据培训联盟、数据共享联盟等,经常会收到邀请做讲课深有体会。
第五类:CDO 们,技术架构师们,大数据分析师们,获得长足的薪水提高第六类:一些媒体,自媒体
媒体版面改版,自媒体增多,受到关注的大数据自媒体如:大数据邦、大数据文摘、大数据参考、腾讯大数据、CSDN 大数据、36 大数据等。
第七类:他们没有赚钱,但是都在圈地,投入很大,未来会成为非常赚钱的企业
那就是免费数据,收费 api 的这些数据**平台们;已经成功的如: Salesforce 23 亿美元的年收入中超过的一半的收入是通过 API 产生的。Google 每天通过 API 处理 50 亿笔交易,Twitter 每天通过 API 处理 130 亿笔交易,亚马逊每天通过 API 处理万亿笔交易,还没有成功的但是已经获得很好的发展的国内如:BAT、运营商、**的数据**平台,高德数据**平台,数据交易市场 (数海科技、数据堂、聚合数据、九次方、美林数据等)。
数据之美在于流通,在于推动业务发展,在于提高用户体验,在于预测业务发展做好企业战略规划,在于集群众智慧、激活人员动力。利用数据推动商业变革才刚刚开始,做企业赚钱才是硬道理,先活下来,因为企业的大数据路还很长,变数也很多。盲目跟风,不可取!
题主是否想问“一亿里面有多少个一万”?。一万个。一亿等于10000万。“一亿”是亿级单位,用数学计数法表示为10的九次方,“一万”是万级单位,一亿里有一万个一万组成,是一个非常庞大的数字。
前瞻产业研究院《2016-2021年中国大数据金融行业市场前瞻与投资战略规划分析报告》希望有用。
第1章:大数据金融行业发展概述
1.1 大数据产业发展背景概述
1.1.1 大数据产业的概念
(1)数据产生与集聚层
(2)数据组织与管理层
(3)数据分析与发现层
(4)数据应用与服务层
1.1.2 大数据的生态系统
1.1.3 大数据的商业价值
(1)大数据的商业价值杠杆
(2)大数据创造的商业价值
1.2 大数据产业行业应用情况
1.2.1 大数据产业各个行业应用情况
(1)不同领域潜在价值评估
(2)不同领域投资结构分布
1.2.2 大数据产业金融领域应用情况
1.3 大数据金融概念及其特点
1.3.1 大数据金融基本定义
1.3.2 大数据金融主要特征
1.4 大数据金融主要发展模式
1.4.1 平台金融发展模式
1.4.2 供应链金融发展模式
第2章:大数据金融发展环境分析
2.1 大数据金融行业政策环境分析
2.1.1 行业监管体系概述
2.1.2 行业主要政策分析
2.1.3 政策环境对行业发展影响
2.2 大数据金融行业经济环境分析
2.2.1 国内经济走势分析
(1)国内GDP增速情况
(2)工业生产增速情况
(3)固定资产投资情况
2.2.2 国内金融市场分析
(1)银行资产负债规模分析
(2)银行**规模分析
(3)银行风险能力分析
2.2.3 国内经济发展趋势
2.2.4 经济环境对行业发展影响
2.3 大数据金融行业技术环境分析
2.3.1 大数据与云计算
2.3.2 大数据处理工具
2.3.3 技术环境对行业发展影响
2.4 大数据金融行业社会环境分析
2.4.1 互联网行业发展现状
(1)互联网网民规模分析
(2)互联网资源规模分析
2.4.2 社交媒体发展现状
(1)新闻网站
(2)网络视频
(3)搜索引擎
(4)即时通信
(5)微博客
(6)博客/个人空间
2.4.3 移动设备发展现状
2.4.4 社会环境对行业发展影响
2.5 大数据金融国际发展分析
2.5.1 银行大数据全球发展现状
(1)海外银行大数据发展分析
(2)银行大数据建设案例分析
2.5.2 保险大数据全球发展现状
(1)海外保险大数据发展分析
(2)保险大数据建设案例分析
2.5.3 国外大数据金融发展启示
第3章:大数据金融创新分析
3.1 大数据金融三大创新支点
3.2 大数据金融基础设施创新
3.2.1 支付体系建设分析
(1)支付行业用户规模
(2)支付行业交易规模
(3)支付行业模式分析
(4)支付行业市场规模预测
3.2.2 征信体系建设分析
(1)征信机构业务规模分析
(2)征信机构数据库建设情况
(3)征信行业数据端商业模式
(4)大数据征信发展趋势分析
3.2.3 资产交易平台分析
(1)资产交易平台发展规模
(2)资产交易平台主要类别
1)银行系网贷平台
2)民营系网贷平台
3)国资系网贷平台
4)上市公司系网贷平台
5)风投系网贷平台
(3)资产交易平台商业模式
3.2.4 基础设施创新方向
(1)支付体系介质创新
(2)征信体系多元发展
(3)交易平台去中介化
3.3 大数据金融平台创新分析
3.3.1 电商平台发展现状分析
(1)电商平台客户结构分析
(2)电商市场竞争格局分析
(3)电商领先企业优势分析
(4)电商行业投资并购分析
3.3.2 社交平台发展现状分析
(1)社交网络流量统计排名分析
(2)社交网络市场竞争格局分析
(3)社交网络领先企业优势分析
(4)社交网络平台投资并购分析
3.3.3 信息服务平台发展现状
(1)门户网站竞争格局分析
(2)门户网站投资并购分析
3.3.4 平台建设创新发展方向
(1)用户积累方式革新
(2)平台个性定制革新
3.4 大数据金融渠道创新升级分析
3.4.1 银行业渠道互联网化发展现状
(1)电子银行的交易规模
(2)电子银行的模式分析
3.4.2 保险业渠道互联网化发展现状
(1)保险业网销交易规模
(2)保险业网销模式分析
3.4.3 证券业渠道互联网化发展现状
(1)互联网证券交易情况
(2)互联网证券模式分析
3.4.4 渠道创新升级策略分析
(1)渠道定位转型
(2)实体渠道转型
第4章:大数据金融具体应用领域
4.1 银行业大数据金融应用分析
4.1.1 银行业大数据金融发展历程
4.1.2 银行业大数据金融创新模式
(1)风险控制模式创新
(2)产品营销模式创新
(3)银行运营模式创新
(4)银行服务模式创新
4.1.3 银行业大数据金融应用现状
4.1.4 银行业大数据金融经典案例
(1)花旗银行大数据金融案例分析
(2)中信银行大数据金融案例分析
(3)浦发银行大数据金融案例分析
(4)民生银行大数据金融案例分析
4.1.5 银行业大数据金融发展潜力
4.1.6 银行业大数据金融发展前景
4.2 保险业大数据金融应用分析
4.2.1 保险业大数据金融发展历程
4.2.2 保险业大数据金融创新模式
(1)赔付管理模式创新
(2)业务定价模式创新
(3)险企运营模式创新
(4)产品营销模式创新
4.2.3 保险业大数据金融发展现状
4.2.4 保险业大数据金融经典案例
(1)平安保险大数据金融案例分析
(2)泰康人寿大数据金融案例分析
4.2.5 保险业大数据金融发展前景
4.3 证券业大数据金融应用分析
4.3.1 证券业大数据金融发展历程
4.3.2 证券业大数据金融创新模式
(1)客户关系管理模式创新
(2)证券监管模式创新
(3)市场预期模式创新
4.3.3 证券业大数据金融发展现状
4.3.4 证券业大数据金融经典案例
(1)海通证券大数据金融案例分析
(2)国泰君安大数据金融案例分析
(3)中信证券大数据金融案例分析
4.3.5 证券业大数据金融发展前景
4.4 其他领域大数据金融应用情况
4.4.1 信托业大数据金融应用分析
4.4.2 小额**领域大数据金融应用分析
4.4.3 **业大数据金融应用分析
4.4.4 网贷大数据金融应用分析
第5章:大数据金融领先服务商分析
5.1 国外领先大数据金融服务商
5.1.1 IBM
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
1)利润分析
2)资产负债分析
3)现金流量分析
(5)企业大数据收入分析
(6)企业竞争策略分析
(7)企业最新发展动向
(8)企业发展优劣势分析
5.1.2 甲骨文股份有限公司
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
1)利润分析
2)资产负债分析
3)现金流量分析
(5)企业大数据收入分析
(6)企业发展战略分析
(7)企业最新发展动向
5.1.3 英特尔
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
1)利润分析
2)资产负债分析
3)现金流量分析
(5)企业大数据收入分析
(6)企业发展战略分析
(7)企业最新发展动向
5.1.4 SAP公司
(1)企业基本信息概述
(2)企业大数据布局
(3)企业大数据解决方案
(4)企业主营业务分析
1)利润分析
2)资产负债分析
3)现金流量分析
(5)企业大数据收入分析
(6)企业大数据价值分析
(7)企业最新发展动向
5.1.5 文思海辉技术有限公司
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
1)利润分析
2)资产负债分析
3)现金流量分析
(5)企业相关案例分析
(6)企业发展战略分析
(7)企业最新发展动向
(8)企业发展优劣势分析
5.2 国内领先大数据金融服务商
5.2.1 荣之联
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
1)主要经济指标
2)运营能力分析
3)盈利能力分析
4)偿债能力分析
5)发展能力分析
(5)企业研发能力分析
(6)企业发展战略分析
(7)企业最新发展动向
(8)企业发展优劣势分析
5.2.2 九次方
(1)企业基本信息概述
(2)企业大数据布局
(3)企业平台资源分析
(4)企业主营业务分析
(5)企业大数据解决方案分析
(6)企业发展战略分析
(7)企业最新发展动向
(8)企业发展优劣势分析
5.2.3 贝格数据
(1)企业基本信息概述
(2)企业平台资源分析
(3)企业主营业务分析
(4)企业典型案例分析
(5)企业最新发展动向
(6)企业发展优劣势分析
5.2.4 中国保信
(1)企业基本信息概述
(2)企业组织架构分析
(3)企业平台资源分析
(4)企业主营业务分析
(5)企业最新发展动向
5.2.5 Talking Data
(1)企业基本信息概述
(2)企业发展大事记
(3)企业平台资源分析
(4)企业主营业务分析
(5)企业主要客户分析
(6)企业所获荣誉介绍
(7)企业最新发展动向
第6章:互联网企业大数据金融战略布局分析
6.1 阿里巴巴大数据金融布局分析
6.1.1 企业基本信息概述
6.1.2 企业主营业务分析
(1)企业主营业务类型
(2)企业经营业绩分析
(3)企业金融业务分析
6.1.3 企业战略发展布局
6.1.4 企业基础资源分析
(1)企业数据资源分析
(2)企业平台资源分析
(3)企业金融资源分析
6.1.5 企业网站流量分析
6.1.6 企业风险管理体系
6.1.7 企业投资并购动向
(1)2014年阿里巴巴投资布局
(2)2015年阿里巴巴投资布局
6.1.8 业务发展优劣势分析
6.1.9 企业大数据金融业务发展前景
6.2 腾讯公司大数据金融布局分析
6.2.1 企业基本信息概述
6.2.2 企业主营业务分析
(1)企业主营业务类型
(2)企业经营业绩分析
(3)企业金融业务分析
6.2.3 企业战略发展布局
6.2.4 企业基础资源分析
(1)企业数据资源分析
(2)企业平台资源分析
(3)企业金融资源分析
6.2.5 企业网站流量分析
6.2.6 企业风险管理体系
6.2.7 企业投资并购动向
(1)2014年腾讯公司投资布局
(2)2015年腾讯公司投资布局
6.2.8 业务发展优劣势分析
6.2.9 企业大数据金融业务发展前景
6.3 百度公司大数据金融布局分析
6.3.1 企业基本信息概述
6.3.2 企业主营业务分析
(1)企业主营业务类型
(2)企业经营业绩分析
(3)企业金融业务分析
6.3.3 企业战略发展布局
6.3.4 企业基础资源分析
(1)企业数据资源分析
(2)企业平台资源分析
(3)企业金融资源分析
6.3.5 企业网站流量分析
6.3.6 企业风险管理体系
6.3.7 企业投资并购动向
(1)2014年百度公司投资布局
(2)2015年百度公司投资布局
6.3.8 业务发展优劣势分析
6.3.9 企业大数据金融业务发展前景
6.4 京东商城大数据金融布局分析
6.4.1 企业基本信息概述
6.4.2 企业主营业务分析
(1)企业主营业务类型
(2)企业经营业绩分析
(3)企业金融业务分析
6.4.3 企业战略发展布局
6.4.4 企业基础资源分析
(1)企业数据资源分析
(2)企业平台资源分析
(3)企业金融资源分析
6.4.5 企业网站流量分析
6.4.6 企业风险管理体系
6.4.7 企业投资并购动向
(1)2014年京东公司投资布局
(2)2015年京东公司投资布局
6.4.8 业务发展优劣势分析
6.4.9 企业大数据金融业务发展前景
6.5 苏宁云商大数据金融布局分析
6.5.1 企业基本信息概述
6.5.2 企业主营业务分析
(1)企业主营业务类型
(2)企业经营业绩分析
(3)企业金融业务经营效益
6.5.3 企业战略发展布局
6.5.4 企业基础资源分析
(1)企业数据资源分析
(2)企业平台资源分析
(3)企业金融资源分析
6.5.5 企业网站流量分析
6.5.6 企业风险管理体系
6.5.7 企业投资并购动向
6.5.8 业务发展优劣势分析
6.5.9 企业大数据金融业务发展前景
第7章:金融机构大数据金融战略布局分析
7.1 银行大数据金融领先应用机构
7.1.1 建设银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.2 **银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.3 中国银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.4 农业银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.5 交通银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
(3)企业基础建设情况
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)业务发展优劣势分析
7.1.6 **银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.7 中信银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.1.8 平安银行大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
(3)企业基础建设情况
1)企业数据资源分析
2)企业金融资源分析
(4)企业平台建设情况
(5)企业渠道建设情况
(6)企业风险管理情况
(7)企业投资并购动向
(8)业务发展优劣势分析
7.2 保险大数据金融领先应用机构
7.2.1 中国人寿大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.2.2 中国人保大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.2.3 平安保险大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.2.4 泰康人寿大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.2.5 太平保险大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.2.6 阳光保险大数据金融布局分析
(1)企业基本信息概述
(2)企业主营业务分析
1)企业主营业务类型
2)企业经营业绩分析
(3)企业大数据金融布局路径
(4)企业大数据金融发展模式
(5)企业大数据金融业务优劣势分析
7.3 证券大数据金融领先应用机构
7.3.1 国金证券大数据金融布局分析
(1)企业基本信息概述
(2)企业基础资源分析
(3)企业市场预期水平
1)企业大数据金融发展现状
2)企业大数据金融发展前景
(4)企业经营业绩分析
(5)企业营业网点分析
(6)业务发展优劣势分析
7.3.2 中信证券大数据金融布局分析
(1)企业基本信息概述
(2)企业基础资源分析
(3)企业市场预期水平
1)企业大数据金融发展现状
2)企业大数据金融发展前景
(4)企业经营业绩分析
(5)企业营业网点分析
(6)业务发展优劣势分析
7.3.3 国泰君安大数据金融布局分析
(1)企业基本信息概述
(2)企业基础资源分析
(3)企业市场预期水平
1)企业大数据金融发展现状
2)企业大数据金融发展前景
(4)企业经营业绩分析
(5)企业营业网点分析
(6)业务发展优劣势分析
7.3.4 海通证券大数据金融布局分析
(1)企业基本信息概述
(2)企业基础资源分析
(3)企业市场预期水平
1)企业大数据金融发展现状
2)企业大数据金融发展前景
(4)企业经营业绩分析
(5)企业营业网点分析
(6)业务发展优劣势分析
………………